
1. Project Title: Fault-tolerant Encryptable File System

2. Project Background:
Many embedded devices use Flash storage for persistent storage. In situations where power
fluctuates (batteries running out, power outages, pulling the plug), the integrity of these Flash-
based file systems can be compromised, rendering the embedded device degraded or useless.

This problem is often solved by utilizing a transaction-based file system, in which write operations
are atomic. However, no such file system exists today that also provides an interface for user-
defined encryption.

3. Project Objectives:
Design and implement an atomic C-based embedded file system easily adaptable for projects with
unique encryption needs.

4. Project Description:
The solution:

 SHALL be written in ANSI C

 SHALL be suitable for running on an embedded system
o SHOULD be suitable to run on low-resourced systems (CPU, RAM)
o SHOULD offer efficient storage in file system
o SHOULD have small file system code size

 SHALL be optimized for Flash storage (or SSD)
o SHOULD support both NOR and NAND Flash

 SHALL wrap a currently maintained, mature, open-source file system
o SHALL be transaction-based (i.e. atomic write operations)
o SHALL make minimal modifications to the open-source file system, to enable easy

upgrade file system to integrate upstream bugfixes

 SHALL present an interface for using user-defined file encryption

 SHALL present an interface for using user-defined filename obfuscation

 SHOULD be adaptable for use on a hard disk drive (HDD)

Stretch goal:

 SHOULD implement a logical layer, to bridge storage regions that are discontiguous or on
separate parts altogether

Definitions of the above terms (“shall”, “should”) are per RFC 2119.

5. Expectations

Phase 1 (Design):

 Learn about the problem space. Understand/clarify all requirements.

 Find a reliable, repeatable way to corrupt a Flash-based file system as a result of power
loss.

o Find a good hardware platform that will enable easy testing. Arduino? Something
else?

 Perform a trade study of candidate open-source file systems.

 Design a solution that meets all project requirements.

https://tools.ietf.org/html/rfc2119

 Write system-level tests for each of the requirements.
o Generate a traceability matrix to ensure that your test cases cover all of the

requirements.
o Simulate power outages during Flash writes, and ensure that file system remains

intact.
o Identify file system testing, to ensure that that your solution has not negatively

affected the technical soundness of the open source implementation in any way.
(Think file system integrity/correctness.)

 Conduct a Preliminary Design Review (PDR), to include the professor and Northrop
advisor.

 Implement quick/dirty prototypes for the highest-risk portions of your design. Cut corners.
Verify that you have good solutions to the toughest problems you think you’ll face.

 Conduct a Critical Design Review (CDR), to include the professor and Northrop advisor.

Phase 2 (Implementation):

 Implement your design.

 Perform unit testing throughout (and at the conclusion of) your implementation phase.
o Does the open source tool you chose have any unit-level tests?
o Implement a few different types of encryption to unit-test your wrapper.

 Conduct a Test Readiness Review (TRR), to include the professor and Northrop advisor.

Phase 3 (System Testing):

 Perform system-level tests identified during Phase 1.
o If software changes are required, document them, fix them, then repeat the test

cases.

 Generate a test report.

Phase 4 (Analysis):

 Analyze the strengths and weaknesses of your solution, and present your findings to your
professor and Northrop advisor.

 Enumerate future work.

 (Optional) Test ease of merging in upstream bugfixes from open source product to your
solution. If no upstream updates exist, make up your own. :)

 (Optional) Perform wear-level testing to quantify expected lifetime of Flash storage.

Overall Expectations:

 Use source control management (SCM) for all source code throughout the project. This
includes any throw-away prototype code, as well as your implementation

o I strongly recommend Git, as it’s currently one of the industry favorites.
o GitHub is great. Does your school have an enterprise installation?

 Apply revision control to your documentation as well.
o Hint: You can use the same solution for documents as you did for source control, if

you want. However, you don’t have to.

 Deliver all generated documentation and source code repositories to your professor and
Northrop advisor at the conclusion of your project.

o Bonus if you can make your documentation and source code repositories available
to your professor/advisor throughout your project.

https://en.wikipedia.org/wiki/Traceability_matrix

6. System overview

 The interfaces below are negotiated by Northrop and the student teams.

 The red box below is selected by the student team (after a trade study).

 The green box below is designed/implemented by the student team.

7. Reference material:

Transactional file systems:

 https://en.wikipedia.org/wiki/File_system#Transactional_file_systems

List of File systems optimized for flash memory (needs to be filtered for transactional file systems):

 https://en.wikipedia.org/wiki/List_of_file_systems#File_systems_optimized_for_flash_memo
ry.2C_solid_state_media

https://en.wikipedia.org/wiki/File_system#Transactional_file_systems
https://en.wikipedia.org/wiki/List_of_file_systems#File_systems_optimized_for_flash_memory.2C_solid_state_media
https://en.wikipedia.org/wiki/List_of_file_systems#File_systems_optimized_for_flash_memory.2C_solid_state_media

