
1. Project Title: Fault-tolerant Encryptable File System

2. Project Background:
Many embedded devices use Flash storage for persistent storage. In situations where power
fluctuates (batteries running out, power outages, pulling the plug), the integrity of these Flash-
based file systems can be compromised, rendering the embedded device degraded or useless.

This problem is often solved by utilizing a transaction-based file system, in which write operations
are atomic. However, no such file system exists today that also provides an interface for user-
defined encryption.

3. Project Objectives:
Design and implement an atomic C-based embedded file system easily adaptable for projects with
unique encryption needs.

4. Project Description:
The solution:

 SHALL be written in ANSI C

 SHALL be suitable for running on an embedded system
o SHOULD be suitable to run on low-resourced systems (CPU, RAM)
o SHOULD offer efficient storage in file system
o SHOULD have small file system code size

 SHALL be optimized for Flash storage (or SSD)
o SHOULD support both NOR and NAND Flash

 SHALL wrap a currently maintained, mature, open-source file system
o SHALL be transaction-based (i.e. atomic write operations)
o SHALL make minimal modifications to the open-source file system, to enable easy

upgrade file system to integrate upstream bugfixes

 SHALL present an interface for using user-defined file encryption

 SHALL present an interface for using user-defined filename obfuscation

 SHOULD be adaptable for use on a hard disk drive (HDD)

Stretch goal:

 SHOULD implement a logical layer, to bridge storage regions that are discontiguous or on
separate parts altogether

Definitions of the above terms (“shall”, “should”) are per RFC 2119.

5. Expectations

Phase 1 (Design):

 Learn about the problem space. Understand/clarify all requirements.

 Find a reliable, repeatable way to corrupt a Flash-based file system as a result of power
loss.

o Find a good hardware platform that will enable easy testing. Arduino? Something
else?

 Perform a trade study of candidate open-source file systems.

 Design a solution that meets all project requirements.

https://tools.ietf.org/html/rfc2119

 Write system-level tests for each of the requirements.
o Generate a traceability matrix to ensure that your test cases cover all of the

requirements.
o Simulate power outages during Flash writes, and ensure that file system remains

intact.
o Identify file system testing, to ensure that that your solution has not negatively

affected the technical soundness of the open source implementation in any way.
(Think file system integrity/correctness.)

 Conduct a Preliminary Design Review (PDR), to include the professor and Northrop
advisor.

 Implement quick/dirty prototypes for the highest-risk portions of your design. Cut corners.
Verify that you have good solutions to the toughest problems you think you’ll face.

 Conduct a Critical Design Review (CDR), to include the professor and Northrop advisor.

Phase 2 (Implementation):

 Implement your design.

 Perform unit testing throughout (and at the conclusion of) your implementation phase.
o Does the open source tool you chose have any unit-level tests?
o Implement a few different types of encryption to unit-test your wrapper.

 Conduct a Test Readiness Review (TRR), to include the professor and Northrop advisor.

Phase 3 (System Testing):

 Perform system-level tests identified during Phase 1.
o If software changes are required, document them, fix them, then repeat the test

cases.

 Generate a test report.

Phase 4 (Analysis):

 Analyze the strengths and weaknesses of your solution, and present your findings to your
professor and Northrop advisor.

 Enumerate future work.

 (Optional) Test ease of merging in upstream bugfixes from open source product to your
solution. If no upstream updates exist, make up your own. :)

 (Optional) Perform wear-level testing to quantify expected lifetime of Flash storage.

Overall Expectations:

 Use source control management (SCM) for all source code throughout the project. This
includes any throw-away prototype code, as well as your implementation

o I strongly recommend Git, as it’s currently one of the industry favorites.
o GitHub is great. Does your school have an enterprise installation?

 Apply revision control to your documentation as well.
o Hint: You can use the same solution for documents as you did for source control, if

you want. However, you don’t have to.

 Deliver all generated documentation and source code repositories to your professor and
Northrop advisor at the conclusion of your project.

o Bonus if you can make your documentation and source code repositories available
to your professor/advisor throughout your project.

https://en.wikipedia.org/wiki/Traceability_matrix

6. System overview

 The interfaces below are negotiated by Northrop and the student teams.

 The red box below is selected by the student team (after a trade study).

 The green box below is designed/implemented by the student team.

7. Reference material:

Transactional file systems:

 https://en.wikipedia.org/wiki/File_system#Transactional_file_systems

List of File systems optimized for flash memory (needs to be filtered for transactional file systems):

 https://en.wikipedia.org/wiki/List_of_file_systems#File_systems_optimized_for_flash_memo
ry.2C_solid_state_media

https://en.wikipedia.org/wiki/File_system#Transactional_file_systems
https://en.wikipedia.org/wiki/List_of_file_systems#File_systems_optimized_for_flash_memory.2C_solid_state_media
https://en.wikipedia.org/wiki/List_of_file_systems#File_systems_optimized_for_flash_memory.2C_solid_state_media

